Sixth Semester B.E. Degree Examination, June/July 2015 **Operations Research**

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

a. Define: i) Feasible solution 1

ii) Feasible region

iii) Optimal solution.

(06 Marks)

b. A manufacturer produces three models I, II, III of certain product using raw materials A and

B. The following table gives the data for the problem.

Raw material	Requirement per unit			A 11 - 1-114
	I	II	III	Availability
A	2	3	5	4000
В	4	2	7	6000
Minimum Demand	200	200	150	-
Profit per unit (Rs)	30	20	50	-

Formulate the problem as a linear program model.

(07 Marks)

c. Using graphical method solve the LPP

Maximize $Z = 5x_1 + 4x_2$

Subject to

$$6x_1 + 4x_2 \le 24$$

$$x_1 + 2x_2 \le 6$$

$$-x_1 + x_2 \le 1$$

$$x_2 \le 2$$
, $x_1, x_2 \ge 0$

(07 Marks)

a. Define slack variable and surplus variable.

(04 Marks)

b. Solve the following LPP by simplex method:

Maximize $z = 6x_1 + 8x_2$

Subject to
$$2x_1 + 8x_2 \le 16$$

$$2x_1 + 4x_2 \le 8$$

$$x_1, x_2 \ge 0$$

(10 Marks)

- c. Explain the following:
 - i) A standard form of the LPP
 - ii) Basic solution of a LPP
 - iii) Degeneracy and un bounded solution with respect to simplex methods.

(06 Marks)

Solve the following LPP by Chame's big M method 3

Maximize

$$z = 20x_1 + 10x_2$$

where

Subject to :
$$x_1 + x_2 = 150$$

$$x_1 \le 40$$

$$x_2 \ge 20$$

 $x_1, x_2 \ge 0$

(15 Marks)

Write procedure to solve LPP of two phase simplex method.

(05 Marks)

- Explain the computational procedure of revised simplex method in standard form. (10 Marks)
 - b. Explain the following:
 - i) Weak duality property
- ii) Strong duality property
- iii) Complementary solutions property
- iv) Complementary optimal solution property.

(10 Marks)

PART - B

5 a. User dual simplex method and solve the following LPP:

Maximize $z = 3x_1 + x_2$ Subject to: $x_1 + x_2 \ge 1$

Subject to: $x_1 + x_2 \ge 1$

 $2x_1 + 3x_2 \ge 2$ $x_1, x_2 \ge 0$

(10 Marks)

b. Explain the role of duality theory in sensitivity analysis.

(05 Marks)

c. Write any five key relationships between the primal and the dual problems.

(05 Marks)

6 a. Find an initial solution to the following transportation problem using VAM

Destination

Demand (10 Marks)

b. Solve the following assignment problem

Jobs

11 8 20 M_{i} 17 7 12 M_2 6 15 Machine M_3 13 16 15 12 16 21 17 M_4 24 26 28 14 10 12 M_5 15

(10 Marks)

- 7 a. Define the following with respect to games
 - i) Pay off
- ii) Zero sum game
- iii) Saddle point

(03 Marks)

b. Solve the following game graphically

Player A

(07 Marks)

c. Solve the following game:

(10 Marks)

- 8 a. Write the outline of a basic table search algorithm. Explain it with the help of a minimum spanning tree problem with constraints. (10 Marks)
 - b. Write short notes on: i) simulated annealing ii) Genetic algorithms. (10 Marks)
